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Quantile regression is used in many areas of applied research and business. Ex-
amples are actuarial, financial or biometrical applications. We show that a non-
parametric generalization of quantile regression based on kernels shares with sup-
port vector machines the property of consistency to the Bayes risk. We further
use this consistency to prove that the non-parametric generalization approximates
the conditional quantile function which gives the mathematical justification for
kernel based quantile regression.

1. Introduction

Consider a random sample (xi, yi) from independent and identically distributed random
variables (Xi, Yi) each with unknown probability distribution P on X × Y , 1 ≤ i ≤ n. For
technical reasons we assume throughout this work that X and Y are closed subsets of Rm

and R, respectively. Recall that in this case P can be split up into the marginal distribution
PX and the regular conditional probability P( · |X = x), x ∈ X, on Y .

The goal of quantile regression is to estimate the conditional quantile, i.e. the set valued
function

F ∗
τ,P(x) :=

{
q ∈ R : P(Y ≤ q|X = x) ≥ τ and P(Y ≥ q|X = x) ≥ 1− τ

}
, x ∈ X,

where τ ∈ (0, 1) is a fixed constant. For conceptual simplicity (though mathematically this
is not necessary) we assume throughout this paper that F ∗

τ,P(x) consists of singletons, so
that there exists a unique conditional quantile function f∗τ,P : X → R defined by F ∗

τ,P(x) =
{f∗τ,P(x)}, x ∈ X. Now recall that the so-called pinball loss function

Lτ : R→ [0,∞), Lτ (r) := r(τ − 1{r<0}) =

{
(τ − 1)r if τ < 0,

τr if τ ≥ 0,

has the property that q∗ = f∗τ,P(x) if and only if q∗ minimizes the conditional Lτ risk, i.e.

EPY |X=x
Lτ (Y − q∗) = inf

q∈R
EPY |X=x

Lτ (Y − q) . (1)

Based on this fact Koenker and Bassett (1978) proposed the estimator

f̂τ = arg inf
θ∈Rm

1
n

n∑
i=1

Lτ

(
yi − 〈xi, θ〉

)
,

for cases in which f∗τ,P is a linear function. In this paper we consider a kernel based
generalization of f̂τ which does not require this linearity assumption on f∗τ,P. In order to

1. AMS 2000 subject classification. Primary 62G08, 62G35; secondary 68Q32, 62G20.
2. Keywords and Phrases. Consistency, convex risk minimization, empirical risk minimization, kernel, non-

parametric, quantile regression.

c© Andreas Christmann and Ingo Steinwart. 26-SEP-2006.



A. CHRISTMANN AND I. STEINWART

introduce this generalization let λ > 0 be a regularization parameter and H a reproducing
kernel Hilbert space (RKHS) of a kernel k : X × X → R. Recall, that the reproducing
property gives f(x) = 〈f,Φ(x)〉 for all f ∈ H and x ∈ X, where Φ : X → H is the canonical
feature map defined by Φ(x) := k(·, x), x ∈ X. Throughout this paper we additionally
assume that k is measurable and H is separable, so that Φ becomes Borel measurable by
Petti’s measurability theorem (see Diestel and Uhl, 1977). Takeuchi et al. (2006) proposed
for τ ∈ (0, 1) the kernel based quantile regression (KBQR) estimator which is defined by

fP,λ := arg min
f∈H

EP Lτ

(
Y − f(X)

)
+ λ‖f‖2

H . (2)

For any fixed data set Dn = {(xi, yi), 1 ≤ i ≤ n} ⊂ X × Y we obtain the estimator

fDn,λ := arg min
f∈H

1
n

n∑
i=1

Lτ

(
yi − f(xi)

)
+ λ‖f‖2

H , (3)

where Dn = 1
n

∑n
i=1 δ(xi,yi) denotes the empirical distribution. Note that we obtain fDn,λ =

f̂τ , if we choose the linear kernel k(x, x′) := 〈x, x′〉 and λ := 0.
Our first main result is Theorem 5 which shows that kernel based quantile regression is

risk consistent to the Bayes risk under rather weak assumptions, i.e.

EPLτ

(
Y − fDn,λn(X)

)
→ inf

{
EPLτ

(
Y − f(X)

) ∣∣ f : X → R measurable
}

(4)

holds in probability for n →∞ for suitable sequences of positive regularization parameters
(λn). Note that the infimum on the right hand side of (4) is with respect to all measurable
functions and not only with respect to all functions in the RKHS H. Our second main result
which is Theorem 6 shows that whenever KBQR is Bayes risk consistent it also satisfies

‖fDn,λn − f∗τ,P‖0 → 0

where ‖ ·‖0 denotes a translation invariant metric describing the convergence in probability.
Together both results give a mathematical justification for using KBQR in non-parametric
quantile regression problems.

The rest of the paper is organized as follows. Section 2 presents conditions which ensures
the existence of fP,λ. These results will be used to prove our main theorems which are
presented in Section 3. All proofs are given in the appendix.

2. Existence and uniqueness of infinite-sample KBQR

For any distribution P on X×Y and any measurable map f : X → R we define the Lτ -risk
of f with respect to P by

RLτ ,P(f) := EPLτ

(
Y − f(X)

)
=

∫
X

∫
Y

Lτ

(
y − f(x)

)
dPY |X=x(y) dPX(x) ,

where we recall that the regular conditional probability P(·|X = x) exists because Y is
closed (and thus a Polish space). Moreover, note that the above integral is always defined
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since Lτ is non-negative and continuous, but in general it is not finite. In order to find a
condition which ensures RLτ ,P(f) < ∞ we define

|P|1 :=
∫

X×Y
|y| dP(x, y) .

Now we can formulate a sufficient condition ensuring RLτ ,P(f) < ∞.

Proposition 1 Let P be a distribution on X × Y with |P|1 < ∞ and f : X → R be a
function with f ∈ L1(P). Then we have RLτ ,P(f) < ∞.

The following lemma presents in some sense an inverse statement of the above proposition.

Lemma 2 Let f : X → R be a measurable function and P be a distribution on X ×Y with
RLτ ,P(f) < ∞. Then we have |P|1 < ∞ if and only if f ∈ L1(P).

The next result ensures the existence of a solution fP,λ. In order to formulate it recall
that a kernel k : X ×X → R of a RKHS H is called bounded if

‖k‖∞ := sup
x∈X

√
k(x, x) < ∞.

For such kernels it is well known that the reproducing property yields ‖f‖∞ ≤ ‖k‖∞ · ‖f‖H

for all f ∈ H. In particular, if P is a distribution on X×Y with |P|1 < ∞ then the objective
function in (2) is always finite by Proposition 1, i.e. we have

Rreg
Lτ ,P,λ(f) := RLτ ,P(f) + λ‖f‖2

H < ∞

for all f ∈ H. With these preparations we can now establish the existence and uniqueness
of fP,λ.

Proposition 3 Let P be a distribution on X × Y with |P|1 < ∞, H be an RKHS of a
bounded kernel k, and λ > 0. Then there exists a unique minimizer fP,λ ∈ H of

f 7→ Rreg
Lτ ,P,λ(f)

and we have ‖fP,λ‖H ≤
√
|P|1/λ.

3. Main results

Our first goal in this section is to present a result that establishes risk consistency of
kernel based quantile regression, i.e. we will show that (4) holds in probability for n →
∞ and suitable sequences of positive regularization parameters (λn). Of course, for such
convergence to hold it is necessary that the used RKHS H is rich enough in the sense of

R∗
Lτ ,P,H := inf

f∈H
RLτ ,P(f) = inf

{
RLτ ,P(f) | f : X → R measurable

}
=: R∗

Lτ ,P . (5)

The following proposition which is essentially taken from Steinwart et al. (2006) translates
this richness in an easier to handle denseness assumption.
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Proposition 4 Let H be the RKHS of a bounded kernel k : X × X → R and µ be a
distribution on X. Then the following statements are equivalent:

i) H is dense in L1(µ).

ii) Equation (5) holds for all distributions P on X × Y with PX = µ and |P|1 < ∞.

Note that it was shown by Steinwart et al. (2006) that e.g. the popular Gaussian radial
basis function (RBF) kernel defined by k(x, x′) = exp(−γ‖x − x′‖2) for γ > 0 fixed and
x, x′ ∈ Rm satisfies condition i) of Proposition 4 for all distributions µ on Rm. Obviously,
this kernel is also bounded, because |k(x, x′)| ≤ 1 for all x, x′ ∈ Rm. Moreover, for compact
X and continuous kernels k on X condition i) of Proposition 4 is satisfied for all distributions
µ on X if k is universal in the sense of Steinwart (2001), i.e. if its RKHS is dense in the
space C(X) of continuous functions mapping X to R. Examples of such kernels including
the Gaussian RBF kernel are described by Steinwart (2001). Finally, note that polynomial
kernels k(x, x′) = (c + 〈x, x′〉)m, m ≥ 1, c ≥ 0, x, x′ ∈ Rm, are also popular in practice, but
they are neither bounded nor dense for general measures µ.

We can now formulate our first main result.

Theorem 5 Let X ⊂ Rm be a closed subset and H be the RKHS of a bounded measurable
kernel k on X such that H is dense in L1(µ) for all distributions µ on X. Furthermore,
let (λn) be a sequence of strictly positive numbers with λn → 0 and λ2

nn → ∞. Then the
KBQR estimator defined by (3) using λn for sample sets of length n is risk consistent in
the sense of (4) for all distributions P with |P|1 < ∞.

In order to formulate our second main result let us introduce some more notations. To
this end let P be a distribution on X × Y and f, g : X → R be measurable functions. We
write

‖f‖L0(PX) := ‖f‖0 :=
∫

X
min

{
1, |f |

}
dPX

and d(f, g) := ‖f −g‖0. It is elementary to check that d is a translation invariant metric on
the space of all measurable functions defined on X, and furthermore a simple application
of Chebyshev’s inequality shows that d describes the convergence in probability PX .

The following result shows that under the assumptions of Theorem 5 the KBQR estimator
approximates the conditional quantile function in terms of ‖ · ‖L0(PX).

Theorem 6 Let X ⊂ Rm be a closed subset and H be the RKHS of a bounded measurable
kernel k on X such that H is dense in L1(µ) for all distributions µ on X. Furthermore,
let (λn) be a sequence of strictly positive numbers with λn → 0 and λ2

nn → ∞. Then the
KBQR estimator defined by (3) satisfies

‖fDn,λn − f∗τ,P‖L0(PX) → 0

in probability for n →∞ and all distributions P on X × Y with |P|1 < ∞.

It is interesting to note that the assumption F ∗
τ,P(x) = {f∗τ,P(x)} is only needed to for-

mulate Theorem 6 in terms of ‖ · ‖0. However, Theorem 3.16 of Steinwart (2005) which is
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used in the proof of Theorem 6 actually provides a framework to replace ‖ · ‖0 by a more
general notion of closedness if the assumption F ∗

τ,P(x) = {f∗τ,P(x)} is violated.
In some sense the convergence with respect to ‖ · ‖0 is rather weak and one may wonder

whether it can be replaced by some stronger notion of convergence. For example, note that
for τ = 1/2 Theorem 5 established the convergence

EP

∣∣Y − fDn,λn(X)
∣∣− EP

∣∣Y − f∗τ,P(X)
∣∣ → 0 , n →∞, (6)

which naturally raises the question whether we actually have

EP

∣∣fDn,λn(X)− f∗τ,P(X)
∣∣ → 0. (7)

Of course, the inverse triangle inequality
∣∣|a| − |b|

∣∣ ≤ |a − b| immediately shows that (7)
implies (6), but since for general a, b, c ∈ R the inequality |a− c| − |b− c| ≥ |a− c| is false
we conjecture that without additional assumptions on P the convergence in (7) does not
follow from the one in (6). In this direction it is also interesting to note that the framework
developed by Steinwart (2005) suggests that for certain classes of distributions P we can
actually replace ‖ · ‖L0(PX) by some (quasi)-norm ‖ · ‖Lp(PX). However, such considerations
are out of the scope of the paper.

Another interesting question is whether we can establish convergence rates in Theorem
5 or Theorem 6. Of course, it is well-known in learning theory that such convergence rates
require additional assumptions on the distribution P, e.g. in terms of the approximation
properties of H with respect to f∗τ,P. Moreover, the techniques used in the proofs of Theorem
5 or Theorem 6 are tuned to provide consistency under rather minimal assumptions on X,
Y , P, and H, but in general these techniques are too weak to obtain good convergence rates
in the statisitical anaysis. Because of these reasons, convergence rates are out of the scope
of this paper, too.

4. Conclusion

In this paper we proved that kernel based quantile regression proposed by Takeuchi et al.
(2006) is risk consistent, i.e. the Lτ -risk of the KBQR estimator converges in probability
to the Bayes risk which is defined as the smallest Lτ -risk for all measurable functions. A
similar result was recently obtained by Christmann and Steinwart (2005) for support vector
regression (see Schölkopf and Smola, 2002, for an introduction). Moreover, we have shown
that the KBQR estimator converges in probability to the conditional quantile function
which provides a mathematical justification of this method.

It might be possible to get rid of the assumption |P|1 < ∞ when considering KBQR if
one changes the empirical regularized minimization problem (3) to

fP,λ := arg inf
f∈H

EPL∗τ (Y − f(X)) + λ‖f‖2
H ,

where L∗τ (y, t) := Lτ (y− t)−Lτ (y) for y, t ∈ R. However, loss functions which can take on
negative values are beyond the scope of this paper.

For another non-parametric generalization of f̂τ based on splines we refer to Koenker
et al. (1994) and He and Ng (1999).
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Appendix

The appendix contains the proofs of our results. We begin by summarizing some properties
of the pinball loss function in the following lemma whose trivial proof is omitted for brevity’s
sake.

Lemma 7 For each τ ∈ (0, 1) the pinball loss function Lτ satisfies the following statements:

i) Lτ is convex and satisfies both Lτ (0) = 0 and lim|r|→∞ Lτ (r) = ∞.

ii) Lτ is Lipschitz continuous with Lipschitz constant |Lτ |1 = max{τ, 1− τ},
i.e. |Lτ (r)− Lτ (r′)| ≤ |Lτ |1 · |r − r′| for all r, r′ ∈ R.

iii) For all r ∈ R we have min{τ, 1− τ} |r| ≤ Lτ (r) ≤ |Lτ |1 |r|.

Proof of Proposition 1. By part iii) of Lemma 7 we have

RLτ ,P(f) = EPLτ

(
Y − f(X)

)
≤ |Lτ |1EP

(
|Y |+ |f(X)|

)
≤ |P|1 + ‖f‖L1(P) < ∞ . �

Proof of Lemma 2. For all a, b ∈ R we have |a− b| ≥ |a| − |b|. Now let us assume that
we know f ∈ L1(P). Part iii) of Lemma 7 then implies

∞ > RLτ ,P(f) ≥ min{τ, 1− τ}EP

(
|Y − f(X)|

)
≥ min{τ, 1− τ}EP

(
|Y | − |f(X)|

)
.

From this we immediately get |P|1 < ∞. The converse implication can be shown analo-
gously. 2

Proof of Proposition 3. Our proof follows DeVito et al. (2004) in a streamlined fashion.
Combining part iii) of Lemma 7 with Lemma 2 of Steinwart et al. (2006) we see that
RLτ ,P : L1(PX) → R is continuous. Furthermore, id : H → L1(PX) is continuous since k
is bounded and hence Rreg

Lτ ,P,λ : H → R is continuous. This map is also convex, and the
set {f ∈ H : Rreg

Lτ ,P,λ(f) ≤ δP,λ} is bounded and non-empty, because it contains 0 ∈ H.
Therefore, Ekeland and Turnbull (1983, Prop. II.4.6) ensures the existence of fP,λ. The
uniqueness follows from the strict convexity of Rreg

Lτ ,P,λ. The last assertion is trivial. 2

Our next goal is to obtain a representation of fP,λ. To this end we need the notion of
subdifferentials which is recalled in the following definition.

Definition 8 (Subdifferential) Let H be a Hilbert space, F : H → R ∪ {∞} be a convex
function and w ∈ H with F (w) 6= ∞. Then the subdifferential of F at w is defined by

∂F (w) :=
{
w∗ ∈ H : 〈w∗, v − w〉 ≤ F (v)− F (w) for all v ∈ H

}
.

With the help of the subdifferential ∂Lτ we can now recall a result shown by DeVito et al.
(2004) (in a slightly generalized form) which in turn is a generalization of a representation
derived by Steinwart (2003).
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Proposition 9 Let P be a distribution on X×Y with |P|1 < ∞, k be a bounded, measurable
kernel k over X with separable RKHS H, and Φ : X → H be the canonical feature map of
k. Then for all λ > 0 there exists a bounded and measurable function hλ : X ×Y → R such
that hλ(x, y) ∈ ∂Lτ (y − fP,λ(x)) for all (x, y) ∈ X × Y and

fP,λ = − 1
2λ

EPhλΦ . (8)

With the help of Proposition 9 we can now state the following stability result.

Theorem 10 Let P, H, Φ, and hλ be as in Proposition 9. Then we have ‖hλ‖∞ ≤ |Lτ |1
and for all distributions Q on X × Y with |Q|1 < ∞ we have

‖fP,λ − fQ,λ‖H ≤ 1
λ
‖EPhλΦ− EQhλΦ‖H . (9)

Proof. Let us first show the upper bound for ‖hλ‖∞. To this end we observe

|hλ(x, y)| ≤ |∂Lτ (y − fP,λ(x))| ≤
∣∣Lτ (y − ·)| [−fP,λ(x), fP,λ(x)]

∣∣
1
≤ |Lτ |1 ,

and hence we deduce ‖hλ‖∞ ≤ |Lτ |1. In order to prove (9) we first observe that the
definition of the subdifferential yields

h(x, y)
(
fQ,λ(x)− fP,λ(x)

)
≤ Lτ

(
y − fQ,λ(x)

)
− Lτ

(
y − fP,λ(x)

)
,

and hence

EQLτ

(
Y − fP,λ(X)

)
+ 〈fQ,λ − fP,λ , EQhΦ〉 ≤ EQLτ

(
Y − fQ,λ(X)

)
. (10)

Moreover an easy calculation shows

λ ‖fP,λ‖2
H + 2λ 〈fQ,λ − fP,λ , fP,λ〉+ λ‖fP,λ − fQ,λ‖2

H = λ‖fQ,λ‖2
H . (11)

Combining (10) and (11) it follows

Rreg
Lτ ,Q,λ(fP,λ) + 〈fQ,λ − fP,λ , EQhΦ + 2λfP,λ〉+ λ‖fP,λ − fQ,λ‖2

H ≤ Rreg
Lτ ,Q,λ(fQ,λ)

≤ Rreg
Lτ ,Q,λ(fP,λ) .

Therefore by using the representation fP,λ = − 1
2λ EPhΦ we obtain

λ‖fP,λ − fQ,λ‖2
H ≤ 〈fP,λ − fQ,λ , EQhΦ− EPhΦ〉

≤ ‖fP,λ − fQ,λ‖H · ‖EQhΦ− EPhΦ‖H .

From this we easily obtain the assertion. 2

Proof of Proposition 4. The implication i) ⇒ ii) immediately follows from Theorem 3
of Steinwart et al. (2006) and the converse implication can be easily established by combining
Theorem 8 with a straighforward modification of Example 5 of Steinwart et al. (2006).

2
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In order to prove Theorem 5 we need some preliminary results. Our first lemma shows
that the influence of the regularization term λ‖fP,λ‖2

H used in the definition of KBQR
vanishes for λ → 0.

Lemma 11 Let H be an RKHS over X with bounded kernel k and P be a distribution on
X × Y such that |P|1 < ∞. Then we have

lim
λ→0+

Rreg
Lτ ,P,λ(fP,λ) = R∗

Lτ ,P,H .

Proof. For ε > 0 we fix an fε ∈ H such that RLτ ,P(fε) ≤ R∗
Lτ ,P,H + ε. Then for all

λ < ε‖fε‖−2
H we have

RLτ ,P,H ≤ λ‖fP,λ‖2
H +RLτ ,P(fP,λ) ≤ λ‖fε‖2

H +RLτ ,P(fε) ≤ 2ε +R∗
Lτ ,P,H . �

The next lemma gives a simple but useful approximation of
∣∣RLτ ,P(f)−RLτ ,P(g)

∣∣.
Lemma 12 Let P be a distribution on X × Y with |P|1 < ∞. For all bounded measurable
functions f, g : X → Y we have∣∣RLτ ,P(f)−RLτ ,P(g)

∣∣ ≤ |Lτ |1 ‖f − g‖∞ .

Proof. The Lipschitz continuity of Lτ immediately gives∣∣RLτ ,P(f)−RLτ ,P(g)
∣∣ ≤ ∫ ∣∣Lτ

(
y − f(x)

)
− Lτ

(
y − g(x)

)∣∣ dP(x, y) ≤ |Lτ |1 ‖f − g‖∞ . �

Under the assumptions of Lemma 11 and Proposition 4 we immediately see that
RLτ ,P(fP,λn) → R∗

Lτ ,P holds for λn → 0. Therefore, we obtain risk consistency when-
ever we can show that |RLτ ,P(fP,λn)−RLτ ,P(fDn,λn)| → 0 holds in probability for n →∞
and suitable null sequences (λn). Our main tool for ensuring this convergence will be The-
orem 10 which in particular describes the behavior of ‖fP,λn − fDn,λn‖∞ if we let Q be an
empirical measure based on a sample set of length n. Lemma 12 showed how the norm of
this difference can be used to estimate |RLτ ,P(fP,λn)−RLτ ,P(fDn,λn)|.

Let us now deal with the stochastic analysis of |RLτ ,P(fP,λ)−RLτ ,P(fDn,λ)| → 0. To this
end we need the following theorem which can be found in Chapter 3 of Yurinsky (1995).

Theorem 13 (Hoeffding’s inequality in Hilbert spaces) Let (Ω,A,P) be a probabil-
ity space, H be a separable Hilbert space, and B > 0. Furthermore, let ξ1, . . . , ξn : Ω → H
be independent H-valued, bounded random variables with ‖ξi‖∞ ≤ B for all i = 1, . . . , n.
Then for all ε ≥ n−1/2 we have

P
(∥∥∥ 1

n

n∑
i=1

(
ξi − EPξi

) ∥∥∥
H
≥ ε

)
≤ exp

(
−3

8
· ε2n

εB + 3B2

)
.

Proof of Theorem 5. To avoid handling with too many constants let us assume ‖k‖∞ =
1. Obviously, this implies ‖f‖∞ ≤ ‖k‖∞‖f‖H ≤ ‖f‖H for all f ∈ H and hence Lemma 12
implies ∣∣RL,P(fP,λn)−RL,P(g)

∣∣ ≤ |Lτ |1 ‖fP,λn − g‖∞ ≤ ‖fP,λn − g‖H (12)
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for all g ∈ H. For n ∈ N and λn > 0 we now write hn : X × Y → R for the function we
obtain by Proposition 9 and Theorem 10. Moreover, let ε > 0 and Dn be a training set of
length n with empirical distribution Dn such that

‖EPhnΦ− EDnhnΦ‖H ≤ λnε . (13)

Then Theorem 10 gives ‖fP,λn − fDn,λn‖H ≤ ε and hence (12) yields∣∣RL,P(fP,λn)−RL,P(fDn,λn)
∣∣ ≤ ‖fP,λn − fDn,λn‖H ≤ ε . (14)

Let us now estimate the probability of Dn satisfying (13). To this end we first observe
that λnn1/2 → ∞ implies that for all sufficiently large n we have λnε ≥ n−1/2. Moreover,
Theorem 10 shows ‖hn‖∞ ≤ 1 and our assumption ‖k‖∞ = 1 thus yields ‖hnΦ‖∞ ≤ 1.
Consequently, Theorem 13 yields

Pn
(
Dn ∈ (X × Y )n : ‖EPhnΦ− EDnhnΦ‖H ≤ λnε

)
≥ 1− exp

(
−3

8
· ε2λ2

nn

ελn + 3

)
for all sufficiently large n. Using λnn1/2 →∞ and λn → 0 we thus find that the probability
of sample sets Dn satisfying (13) converges to 1 if |Dn| = n → ∞. As we have seen above
this implies that (14) holds true with probability tending to 1. Now, since λn → 0 we
additionally have |RL,P(fP,λn) −RL,P| ≤ ε for all sufficiently large n and hence we finally
obtain the assertion. 2

Proof of Theorem 6. We have already seen in Theorem 5 that the KBQR estimator
satisfies

RLτ ,P(fDn,λn) → R∗
Lτ ,P

in probability for n → ∞. Moreover, (y, t) 7→ Lτ (y, t) is a supervised convex loss function
in the sense of Steinwart (2005) whose conditional risks have a unique minimizer, namely
f∗τ,P. Consequently, Theorem 3.16 of Steinwart (2005) in the form of Remark 3.18 yields
the assertion. 2
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